Novel inhibitors of Erm methyltransferases from NMR and parallel synthesis.

نویسندگان

  • P J Hajduk
  • J Dinges
  • J M Schkeryantz
  • D Janowick
  • M Kaminski
  • M Tufano
  • D J Augeri
  • A Petros
  • V Nienaber
  • P Zhong
  • R Hammond
  • M Coen
  • B Beutel
  • L Katz
  • S W Fesik
چکیده

The Erm family of methyltransferases confers resistance to the macrolide-lincosamide-streptogramin type B (MLS) antibiotics through the methylation of 23S ribosomal RNA. Upon the methylation of RNA, the MLS antibiotics lose their ability to bind to the ribosome and exhibit their antibiotic activity. Using an NMR-based screen, we identified a series of triazine-containing compounds that bind weakly to ErmAM. These initial lead compounds were optimized by the parallel synthesis of a large number of analogues, resulting in compounds which inhibit the Erm-mediated methylation of rRNA in the low micromolar range. NMR and X-ray structures of enzyme/inhibitor complexes reveal that the inhibitors bind to the S-adenosylmethionine binding site on the Erm protein. These compounds represent novel methyltransferase inhibitors that serve as new leads for the reversal of Erm-mediated MLS antibiotic resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and molecular docking of novel N-((2-chloroquinolin-3-yl) methylene)-4-methylbenzenamine derivatives as anti-HIV-1 reverse transcriptase inhibitors

In this research work, a proficient method has been developed for the preparation of novel N-((2-chloroquinolin-3-yl) methylene)-4-methylbenzenamine derivatives from 2-chloroquinoline-3-carbaldehyde derivatives and p-toluidine in ethanol as solvent and using catalytic amount of acetic acid under reflux conditions to obtain desired products in good yields. The identification of all the synthesiz...

متن کامل

Design and Synthesis of New Benzimidazole and Pyrimidine Derivatives as α-glucosidase Inhibitor

In an endeavor to find a novel series of antihyperglycemic agents, new benzimidazole and pyrimidine derivatives were successfully synthesized efficiently in high yield with high purity, starting from amino acids in the presence of phosphorus oxychloride (POCl3). The synthesized compounds were identified by 1H-NMR, 13C-NMR, FT-IR spectroscopic techniques and elemental analysis. All products were...

متن کامل

Design and Synthesis of New Benzimidazole and Pyrimidine Derivatives as α-glucosidase Inhibitor

In an endeavor to find a novel series of antihyperglycemic agents, new benzimidazole and pyrimidine derivatives were successfully synthesized efficiently in high yield with high purity, starting from amino acids in the presence of phosphorus oxychloride (POCl3). The synthesized compounds were identified by 1H-NMR, 13C-NMR, FT-IR spectroscopic techniques and elemental analysis. All products were...

متن کامل

One-pot Synthesis of Amidoalkyl Naphthol Derivatives as Potential Nucleoside Antibiotics and HIV Protease Inhibitors using Nano-SnO2 as an Efficient Catalyst

An  efficient  three-component  one-pot  synthesis  of 1-amidoalkyl-2-naphthols  from  2-naphthol, aldehydes, and acetamide using nano-SnO2as catalyst is described. The reactions were carried out at 80oC under water-solvent media. The structures of the compounds were characterized by IR, 1HNMR, 13C-NMR,  and  Mass  spectra  and  by  elemental  analysis.  The  advantages  of  the  effective meth...

متن کامل

Design, Synthesis and Biological Evaluation of 4-Benzamidobenzoic Acid Hydrazide Derivatives as Novel Soluble Epoxide Hydrolase Inhibitors

Inhibitors of soluble epoxide hydrolase (sEH) represent one of the novel pharmaceutical approaches for treating hypertension, vascular inflammation, pain and other cardiovascular related diseases. Most of the potent sEH inhibitors reported in literature often suffer from poor solubility and bioavailability. Toward improving pharmacokinetic profile beside favorable potency, two series of 4-benza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 42 19  شماره 

صفحات  -

تاریخ انتشار 1999